skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wagner, Maggie R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available September 28, 2026
  3. ABSTRACT Plant roots are the critical interface between plants, soil, and microorganisms, and respond dynamically to changes in water availability. Although anatomical adaptations of roots to water stress (e.g., the formation of root cortical aerenchyma) are well documented, it remains unclear whether these responses manifest along the length of individual roots under both water deficiency and water overabundance. We investigated the anatomical responses ofTripsacum dactyloidesL. to both drought and waterlogging stress at high spatial resolution. Nodal roots were segmented into one‐centimeter sections from the tip to the base, allowing us to pinpoint regions of maximal anatomical change. Both stressors overall increased the proportion of root cortical aerenchyma, but metaxylem responses differed: waterlogging increased the proportion of the stele that was occupied by metaxylem with fewer but larger vessels. Drought significantly increased root hair formation within two centimeters of the root tip. The most pronounced anatomical changes occurred 3–7 cm from the root tip, where cortical cell density declined as aerenchyma expanded. These findings highlight spatial variation in root anatomical responses to water stress and provide a framework that can inform sampling protocols for various other data types where sampling effort is limiting (e.g., microbiome, transcriptome, proteome). 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Yuan, Y (Ed.)
    Abstract Disease resistance in plants can be conferred by single genes of large effect or by multiple genes each conferring incomplete resistance. The latter case, termed quantitative resistance, may be difficult for pathogens to overcome through evolution due to the low selection pressures exerted by the actions of any single gene and, for some diseases, is the only identified source of genetic resistance. We evaluated quantitative resistance to 2 diseases of maize in a biparental mapping population as well as backcrosses to both parents. Quantitative trait locus analysis shows that the genetic architecture of resistance to these diseases is characterized by several modes of gene action including additivity as well as dominance, overdominance, and epistasis. Heterosis or hybrid vigor, the improved performance of a hybrid compared with its parents, can be caused by nonadditive gene action and is fundamental to the breeding of several crops including maize. In the backcross populations and a diverse set of maize hybrids, we find heterosis for resistance in many cases and that the degree of heterosis appears to be dependent on both hybrid genotype and disease. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026
  5. Premise: Plant roots are the critical interface between plants, soil, and microorganisms, and respond dynamically to changes in water availability. Although anatomical adaptations of roots to water stress (e.g., the formation of root cortical aerenchyma) are well documented, it remains unclear whether these responses manifest along the length of individual roots under both water deficiency and water over-abundance. Methods: We investigated the anatomical responses of Tripsacum dactyloides L. to both drought and flood stress at high spatial resolution. Nodal roots were segmented into one-centimeter sections from the tip to the base, allowing us to pinpoint regions of maximal anatomical change. Results: Both stressors increased the proportion of root cortical aerenchyma, but metaxylem responses differed: flooding increased vessel area whereas drought led to smaller vessels, with both showing a lower number of vessels. Drought also significantly increased root hair formation, but only within the first two centimeters. The most pronounced anatomical changes occurred 3-7 cm from the root tip, where cortical cell density declined as aerenchyma expanded. Discussion: These findings highlight spatial variation in root anatomical responses to water stress and provide a framework integrating various other data types where sampling effort is limiting (e.g., microbiome, transcriptome, proteome). 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  6. Studies of plant–microbe interactions using synthetic microbial communities (SynComs) often require the removal of seed-associated microbes by seed sterilization prior to inoculation to provide gnotobiotic growth conditions. Diverse seed sterilization protocols have been developed and have been used on different plant species with various amounts of validation. From these studies it has become clear that each plant species requires its own optimized sterilization protocol. It has, however, so far not been tested whether the same protocol works equally well for different varieties and seed sources of one plant species. We evaluated six seed sterilization protocols on two different varieties (Sugar Bun and B73) of maize. All unsterilized maize seeds showed fungal growth upon germination on filter paper, highlighting the need for a sterilization protocol. A short sterilization protocol with hypochlorite and ethanol was sufficient to prevent fungal growth on Sugar Bun germinants; however a longer protocol with heat treatment and germination in fungicide was needed to obtain clean B73 germinants. This difference may have arisen from the effect of either genotype or seed source. We then tested the protocol that performed best for B73 on three additional maize genotypes from four sources. Seed germination rates and fungal contamination levels varied widely by genotype and geographic source of seeds. Our study shows that consideration of both variety and seed source is important when optimizing sterilization protocols and highlights the importance of including seed source information in plant–microbe interaction studies that use sterilized seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  7. Both chronic and acute drought alter the composition and physiology of soil microbiota by selecting for functional traits that preserve fitness in dry conditions. Currently, little is known about how the resulting precipitation legacy effects manifest at the molecular and physiological 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 available under aCC-BY-NC-ND 4.0 International license. (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint levels and how they influence neighboring plants, especially in the context of subsequent drought. We characterized metagenomes of six prairie soils spanning a steep precipitation gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental profiles, we identified bacterial taxa and functional gene categories associated with precipitation. This microbial precipitation legacy persisted through a 5-month-long experimental drought and mitigated the negative physiological effects of acute drought for a wild grass species that is native to the precipitation gradient, but not for the domesticated crop species maize. In particular, microbiota with a low-precipitation legacy altered transcription of a subset of host genes that mediate transpiration and intrinsic water use efficiency during drought. Our results show how long-term exposure to water stress alters soil microbial communities with consequences for the drought responses of neighboring plants. 
    more » « less
  8. Abstract Both chronic and acute drought alter the composition and physiology of soil microbiota by selecting for functional traits that preserve fitness in dry conditions. Currently, little is known about how the resulting precipitation legacy effects manifest at the molecular and physiological levels and how they influence neighboring plants, especially in the context of subsequent drought. We characterized metagenomes of six prairie soils spanning a steep precipitation gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental profiles, we identified bacterial taxa and functional gene categories associated with precipitation. This microbial precipitation legacy persisted through a 5-month-long experimental drought and mitigated the negative physiological effects of acute drought for a wild grass species that is native to the precipitation gradient, but not for the domesticated crop species maize. In particular, microbiota with a low-precipitation legacy altered transcription of a subset of host genes that mediate transpiration and intrinsic water use efficiency during drought. Our results show how long-term exposure to water stress alters soil microbial communities with consequences for the drought responses of neighboring plants. 
    more » « less